
2026/02/03 03:59 1/6 Tema 4: Mecanismos de autenticación, autorización y control de acceso

Knoppia - http://knoppia.net/

Tema 4: Mecanismos de autenticación,
autorización y control de acceso

Los servicios REST/JSON gestionan eventos corporativos. Los conceptos que se estuduan son los
aplicables a otro tipo de servicios como SOAP, Thrift, gRPC, etc… Un servicio REST es un servicio que
implementa la lógica de negocio, pero que no tiene interfaz gráfica y es utilizado por un servicio o
aplicación que si tiene interfaz gráfica. Un ejemplo de esto sería una aplicación para ver el tiempo en
el móvil, la aplicación contactaría con un servicio REST por HTTP para solicitar la información
climatológica y el REST devolvería la información en un formato estructurado como por ejemplo XML
o JSON. Este mismo servicio rest podría ser utilizado por otras aplicaciones con una interfaz gráfica
diferente.

Vamos a ver un ejemplo base. Normalmente dentro de estos servicios suelen haber roles como:

User
Manager

El servicio atiende a peticiones HTTP para:

[Manager] Crear un evento
[Manager] Manager
[No autentciado] Buscar eventos
[No autenticado]Obtener información de un evento
[User]responder a un evento
[User y Manager]Recuperar las respuestas de un usuario

Dependiendo de lo que se vaya viendo en cada apartado se analizará este ejemplo base o versiones
extendidas de este.

Autenticación y Autorización

Muchas funcionalidades requieren que el usuario de la aplicación cliente se autentique. Se reciben el
nombre de usuario y la contraseña. Normalmente, el punto de acceso de autenticación podría
devolver un toquen que autoriza a esa aplicación cliente a hacer peticiones al servicio REST.El token
debe ser seguro. Un atacante no debería tener forma de generar un token arbitrario válido.

Cuando el servicio recibe una petición debe comprobar que el token es válido y si lo es, comprobar
que no esté caducado. Tras eso se revisa si el usuario que ha realizado la petición está autorizado.

Autenticación en HTTP

La cabecera debe ser ASCII estádar (7 bits, del 0 al 127) si hay simbolos extraños en la contraseña
puede haber problemas, por ello normalmente se codifican las contraseñas en base 64.

Last update: 2024/12/12 17:14 app:tema4 http://knoppia.net/doku.php?id=app:tema4&rev=1734023664

http://knoppia.net/ Printed on 2026/02/03 03:59

JSON Web Token

define un formato compacto para transmitir información en JSON de forma segura entre 2 partes. Está
dividido en 3 partes

Cabecera: Es un JSON en formato base64URL que indica el tipo de token (formada por 2
elementos: TYP(tipo) y ALG)
Cuerpo: Es un JSON en formato base64URL que contiene el cuerpo del mensaje (Formado por
sub(subject), roles(rol que tiene) y exp(contenido del mensaje))
Firma: En formato base64URL

{
 "typ": "JWT"
 "alg": "HS256"
} |
 | {
 | "sub":"bob"
 | "roles":["MANAGER"]
 | "exp": 020399
 | } |
 | |
 ˇ ˇ
Cabecera.cuerpo.firma
 | | | ^
 | | | |
 | | | Base64URL
 | | | ^
 | | | |
 | | | |
 ---------->Algoritmo de firma

Se usa el formato base64URL para evitar el uso de caracteres extraños que puedan dar problemas en
la comunicación.

Tipos de campos de cabecera

Registrados: estandarizados, aunque no son obligatorios (sub para identificar username, id….
exp para indicar fecha)
Públicos: Los puede definir cualquiera. Se suele recomendar usar el formato definido por la
IANA.
Privados: Los puede definir cualquiera, son campos que se utilizan en un contexto local

Firma

Se puede firmar con criptografía simétrica y asimétrica. Si se usa simétrica, la firma es un MAC:
Message Authentication Code, mientras que si es asimétrica se la llama firma digital, donde hay una
tercera firma como conocida de no repudio, que solo conoce la parte privada, de forma que el

2026/02/03 03:59 3/6 Tema 4: Mecanismos de autenticación, autorización y control de acceso

Knoppia - http://knoppia.net/

firmante no puede negar el haber firmado algo. La firma se suele poder validar con la clave pública.

Ejemplo

En la autenticación se comprueba si usuario y contraseña son correcto, si lo son, se toman el rol,
usuario y demás y se generan la cabecera y el mensaje. En caso de no ser correcto se devuelve error
401. Si todo es correcto se nos devuelve una respuesta.

OAuth

Es un sistema de autenticación. Cuando te logueas, te manda a una página de google donde iniciar
sesión, pide permisos para el inicio de sesión y acto seguido redirige a la web/aplicación a la que se
quiere loguear.

Endpoints del servidor de autorización

Authorization (HTML): Formulario de autenticación
Token (REST/JSON): permite obtener un tonken de acceso
Introspection (REST/JSON): permite verificar tokens

OpenID Connect

SAML

Es un protocolo de autenticación y autorización. Se basa en XML. La mayor parte de los Identity
Providers (IdPs) proporcionan una implementación de SAML. Contempla varios escenarios llamados
perfiles. SAML va muy ligado a Single Sing On (SSO) en aplicaciones Web. SAML también suele estar
relacionado con directorios de ususarios empresariales LDAP como Active Directory. SAML se suele
usar generalmente de forma corporativa, no se suele usar en internet.

Como funciona

El navegador accede a la aplicación web y, dando por hecho que no se está logueado, manda al
formulario de autenticación IdPs, una vez autenticado, el servidor devuelve una respuesta HTML con
un formulario con un javascript con un onload (Que el usuario no ve) que hace un submit a la
aplicación web, que envía los datos del formulario, con unos campos ocultos con información sobre el
usuario (Que este no ve), que se podría decir que es como un ID Token en formato XML firmado. Tras
eso la aplicación redirecciona a la página que se quería loguear.

Aplicaciones nativas

SAML se diseño antes de que existieran teléfonos móviles. Existen aplicaciones de terceros que
permiten utilizarlo, pero con bastantes riesgos de seguridad.

Last update: 2024/12/12 17:14 app:tema4 http://knoppia.net/doku.php?id=app:tema4&rev=1734023664

http://knoppia.net/ Printed on 2026/02/03 03:59

Kerberos

Kerberos es un protocolo de autenticación y autorización. Esta pensado para que una aplicación en un
equipo de sobremesa lo corra contra un servicio. Se realiza una petición al servicio de autenticación,
Se valida el usuario y se recibe un Ticket to Get Tickets (TGT) que se guarda en el sistema operativo.
Ahora, si una aplicación cliente quisiera usar este servicio, tomaría el TGT y realizaría una petición al
Ticket Granting Service (TGS). Sigue los siguientes pasos:

Arrancas el PC1.
Te autenticas2.
EL sistema operativo pide un TGT3.
Se recibe un TGT y se guarda en el Sistema Operativo4.
Se arranca una aplicación cliente5.
Pide el TGT al sistema operativo y un token para consumir el servicio6.
Con ese ticket se establece una conexión segura para utilizar las aplicaciones7.

Se podría decir que es como un Single Sing On para aplicaciones de escritorio.

SPNEGO

Kerberos no se puede usar en aplicaciones web, por eso se crea SPNEGO, que permite realizar
kerberos para aplicaciones web a nivel de servidor. Se suele utilizar en el esquema Negotiate de HTTP
con la cabecera Autorization. Se suele usar para autenticar un navegador que corre en windows con
una aplicación web usando kerberos como esquemas de autenticación para dicha aplicación web.
Sigue los siguientes pasos:

Arrancamos el PC1.
Nos autenticamos en el equipo2.
Windows Pide el TGT al servicio de autenticación y lo guarda3.
Se arranca el navegador4.
Se intenta acceder a una aplicación web5.
Se realiza una petición6.
Se recibe un error 401: Usa esquema Negotiate con authorization7.
El navegador pide al sistema operativo el TGT8.
Recibe el TGT y pide al Ticket Granting Service (TGS) un token9.
El navegador vuelve a hacer un GET con la cabecera Negotiate seguida del token10.
La aplicación web Llama al Ticket Granting Service (TGS) para validar el token11.
Si el token es válido se da acceso a la aplicación web al usuario.12.

Control de acceso

Impedir a otros usuarios que puedan acceder a funcionalidades como las de administrador.

Control de acceso basado en roles

Basado en modelo RBAC Role Based Access Control, esta condicionado a que un usuario tenga un rol

2026/02/03 03:59 5/6 Tema 4: Mecanismos de autenticación, autorización y control de acceso

Knoppia - http://knoppia.net/

o un conjunto de roles. Funciona bien cuando aplicaciones y servicios están modelados. La idea es
que un empleado solo pueda usar las aplicaciones y funcionalidades que necesite su departamento.
El problema es que puede ser tedioso al ser necesario establecer todos los roles que debe tener un
usuario, el problema de esto es que puede llegar a ser problemático si hay demasiados roles y
usuarios. Es una solución perfecta para una empresa con pocos departamentos que igual necesita un
rol por departamento más otros de administración. El problema es cuando la empresa es
excesivamente grande y necesita cientos de roles diferentes.

RBAC es un modelo muy estático, por su solo no permite modelar de forma completa las reglas de
control de acceso. Es necesario código adicional para ello.

Control de acceso basado en atributos

Es el sistema más potente. Conocido como modelo ABAC: Attribute Based Access Control. Suele
utilizar atributos (Tienen un nombre y un valor), curiosamente los roles pueden ser consideradas
atributos. se tiene en cuenta lo siguiente:

Sujeto: el que invoca la acción. Puede ser un usuario u otro tipo de entidad. Atributos como ID,
nombre, roles, etc…
Recurso: Objeto sobre el que se aplican las acciones. Atributos propios
Entorno: Atributos como día, mes, etc…
Políticas

El modelo ABAC pretende que las PRINCIPALES políticas de control de seguridad NO estén cableadas
en las aplicaciones. De esta forma si se decide variar las reglas de control de acceso no es necesario
tocar el código de las aplicaciones. La idea es que puedan ser editadas por alguien que no sea
desarrollador (Poco realista, al final lo acaba haciendo un desarrollador por orden de alguien de
negocio).

Ejemplos de ABAC

Eliminación de proyectos:
user.rol == 'MANAGER' && project.userId == user.id

Edición de una nómina:
user.department == 'HR' && paysheet.unpaid && date.hour >= 8 && date.hour <=
18 && location == 'OFFICE'

Como funciona el modelo ABAC

La aplicación debe correr la librería PEP (Policy Enforcement Point)1.
Cuando la aplicación recibe una petición de un usuario, la aplicación pregunta al PEP, que a su2.
vez pregunta al Policy Decision Point (PDP) si dicho usuario puede realizar la acción
El PDP recupera la política relacionada del Policy Administration Point (PAP), la evalúa,3.
recuperando los atributos del usuario para compararlos a través del PIP (Policy Information
Point).
Si los atributos coinciden con aquellos permitidos se da permiso al usuario la realización de la4.
acción en la aplicación.

Last update: 2024/12/12 17:14 app:tema4 http://knoppia.net/doku.php?id=app:tema4&rev=1734023664

http://knoppia.net/ Printed on 2026/02/03 03:59

From:
http://knoppia.net/ - Knoppia

Permanent link:
http://knoppia.net/doku.php?id=app:tema4&rev=1734023664

Last update: 2024/12/12 17:14

http://knoppia.net/
http://knoppia.net/doku.php?id=app:tema4&rev=1734023664

	Tema 4: Mecanismos de autenticación, autorización y control de acceso
	Autenticación y Autorización
	Autenticación en HTTP
	JSON Web Token
	Tipos de campos de cabecera
	Firma
	Ejemplo

	OAuth
	Endpoints del servidor de autorización

	OpenID Connect
	SAML
	Como funciona
	Aplicaciones nativas

	Kerberos
	SPNEGO

	Control de acceso
	Control de acceso basado en roles
	Control de acceso basado en atributos
	Ejemplos de ABAC
	Como funciona el modelo ABAC

