2026/02/10 14:21 1/7 Sockets

Sockets

Un Socket es un punto de conexidn (Una Tuberia o un Canal) entre 2 procesos e identificado por una
IP y un Puerto. En este caso seran 2 procesos ejecutandose simultaneamente conectados por un
socket.

Proceso 1 ‘ :> I Socket I :> Proceso 2

Un socket funciona de una forma similar a la de los ficheros.

Cliente

Socket Socket = Socket(

BufferedReader br =
PrintWriter pw = 3

br BufferedReader(InputStreamReader(socket.getInputStream()))

pw PrintWriter(OutputStreamWriter(socket.getOutputStream()})

br.readlLine();
pw.println(
pw.Tlush(});

pw.push({};

Servidor

serversocket serverSocet

Socket socket = ServerSock

BufferedReader br =
PrintWriter pw = -

LR

br BufferedReader(K tInputStream(}})
pw PrintWriter(

br.readlLine();
pw.println(
pw.Tlush();
pw. oF

Knoppia - http://knoppia.net/

http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:socket.png
http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:socket.png
http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:socket.png

Last update: 2023/10/05 10:11 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1696500660

Implementacion Cliente

jelouda;

java.io.BufferedReader;

DN

g am{}});
pw = Printhr (amil < putStream()}));

Lid

L)

cadenaRecibida = br
.out.println(cadenaRecibida};

+ cadenaRecibida};

)3

Implementacion Servidor

http://knoppia.net/ Printed on 2026/02/10 14:21

2026/02/10 14:21 3/7 Sockets

jelouda;

BufferedR
pw = PrintWriter(

cadenaRecibida = br.readlLine();

pw.print(cadenaRecibida);
pw.flush();
.out.println("F
(

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

import java.util.Scanner;

public class Servidor {
public static int PUERTO = 5000;//Indicamos el puerto del servidor
public void ejecutar() {
try {
System.out.println("Lanzando Servidor...");
ServerSocket serverSocket = new ServerSocket(Servidor.PUERTO);
Socket socket = serverSocket.accept();
BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Buffer entrada
PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer salida
String cadenaRecibida = br.readLine();
pw.print(cadenaRecibida);
pw.flush();

Knoppia - http://knoppia.net/

Last update: 2023/10/05 10:11 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1696500660

System.out.println("Fin del Servidor");
}catch(IOException e){
e.printStackTrace();
}
}

public static void main(String[] args) {
Servidor server = new Servidor();
server.ejecutar();

Implementacion Servidor continuo

Anadimos un nuevo método al que llamaremos ejecutar infinito:

SN

2y
ocket(.PUERTO);

r{ InputStream getInputStream(})});

=

PrintWriter(OutputStreamWrite utputstream()));

)1

.out.println{br.readLine(});
pw.println{br.readLine(});
pw.Tlush();

(e){

e.printstackTrace();

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

import java.util.Scanner;

public class Servidor {
public static int PUERTO = 5000;//Indicamos el puerto del servidor
public void ejecutar() {
try {
System.out.println("Lanzando Servidor...");
ServerSocket serverSocket = new ServerSocket(Servidor.PUERTO);
//Lo hacemos continuo
//Scanner sc = new Scanner(System.in);

http://knoppia.net/ Printed on 2026/02/10 14:21

http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:imagen_2023-10-05_120946334.png

2026/02/10 14:21 5/7 Sockets

//sc.nextLine();

Socket socket = serverSocket.accept();

BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Buffer entrada

PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer salida

String cadenaRecibida = br.readlLine();

pw.print(cadenaRecibida);

pw.flush();

System.out.println("Fin del Servidor");

tcatch(IOException e){

e.printStackTrace();

}
}
public void ejecutarInfinito() {
try {
System.out.println("Lanzando Servidor...");

ServerSocket serverSocket = new ServerSocket(Servidor.PUERTO);
Socket socket = serverSocket.accept();
BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Buffer entrada
PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer salida
while(true) {
System.out.println(br.readLine());
pw.println(br.readLine());
pw.flush();
}
Ycatch(IOException e){
e.printStackTrace();
}
}
public static void main(String[] args) {
Servidor server = new Servidor();
server.ejecutar();

Implementacion cliente Continuo

Afadimos un nuevo método al que llamaremos ejecutar infinito:

Knoppia - http://knoppia.net/

http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:imagen_2023-10-05_120728806.png

Last update: 2023/10/05 10:11 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1696500660

BufferedReader(puts leade getInputstream()));
PrintWriter(QutputStrea 50 g EputStr BEH

(true) {
linealeida = teclado.nextlLine(};
pw.println(linealeida);
pw.Tlush();

(eN

e.printStackTrace();

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

import java.util.Scanner;

public class Cliente {
public void ejecutar() {

try {

System.out.print("Lanzando conexién....");

Socket socket = new Socket ("127.0.0.1",
Servidor.PUERTO);//Conectamos al servidor

System.out.println("[OK]");

BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Bufer de lectura

PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer de escritura

String cadenaRecibida = br.readLine();

System.out.println(cadenaRecibida);

pw.println("cadena recibida" + cadenaRecibida);

pw.flush();

System.out.println("Fin del Cliente");

}catch(IOException e){

e.printStackTrace();

}

http://knoppia.net/ Printed on 2026/02/10 14:21

2026/02/10 14:21 717 Sockets

public void ejecutarInfinito() {
try {
System.out.print("Lanzando conexién....");
Socket socket = new Socket ("127.0.0.1",
Servidor.PUERTO);//Conectamos al servidor
System.out.println("[OK]");
BufferedReader br = new BufferedReader(new
InputStreamReader (socket.getInputStream()));//Bufer de lectura
PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer de escritura
String linealeida ="";
Scanner teclado = new Scanner(System.in);
while(true) {
linealLeida = teclado.nextLine();
pw.println(linealLeida);
pw.flush();
}

Ycatch(IOException e){
e.printStackTrace();
}
}
public static void main(String[] args) {
Cliente client = new Cliente();
client.ejecutar();

From:
http://knoppia.net/ - Knoppia

Permanent link:
http://knoppia.net/doku.php?id=dad:sockets&rev=1696500660

Last update: 2023/10/05 10:11

Knoppia - http://knoppia.net/

http://knoppia.net/
http://knoppia.net/doku.php?id=dad:sockets&rev=1696500660

	Sockets
	Cliente
	Servidor
	Implementación Cliente
	Implementación Servidor
	Implementación Servidor continuo
	Implementación cliente Continuo

