
2026/02/10 09:04 1/8 Sockets

Knoppia - http://knoppia.net/

Sockets

Un Socket es un punto de conexión (Una Tubería o un Canal) entre 2 procesos e identificado por una
IP y un Puerto. En este caso serán 2 procesos ejecutándose simultáneamente conectados por un
socket.

Un socket funciona de una forma similar a la de los ficheros. Para leer y escribir utilizaremos un Buffer
(PrintWritter y BufferedReader)

Cliente

Servidor

http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:socket.png
http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:socket.png
http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:socket.png

Last update: 2023/10/11 10:47 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1697021249

http://knoppia.net/ Printed on 2026/02/10 09:04

Implementación Cliente

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Scanner;

public class Cliente {
 public void ejecutar() {
 try {
 System.out.print("Lanzando conexión....");
 Socket socket = new Socket ("127.0.0.1",
Servidor.PUERTO);//Conectamos al servidor
 System.out.println("[OK]");
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Bufer de lectura
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer de escritura

2026/02/10 09:04 3/8 Sockets

Knoppia - http://knoppia.net/

 String cadenaRecibida = br.readLine();
 System.out.println(cadenaRecibida);
 pw.println("cadena recibida" + cadenaRecibida);
 pw.flush();
 System.out.println("Fin del Cliente");
 }catch(IOException e){
 e.printStackTrace();
 }
 }
 public static void main(String[] args) {
 Cliente client = new Cliente();
 client.ejecutar();

 }
}

Implementación Servidor

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;

Last update: 2023/10/11 10:47 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1697021249

http://knoppia.net/ Printed on 2026/02/10 09:04

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Scanner;

public class Servidor {
 public static int PUERTO = 5000;//Indicamos el puerto del servidor
 public void ejecutar() {
 try {
 System.out.println("Lanzando Servidor...");
 ServerSocket serverSocket = new ServerSocket(Servidor.PUERTO);
 Socket socket = serverSocket.accept();
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Buffer entrada
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer salida
 String cadenaRecibida = br.readLine();
 pw.print(cadenaRecibida);
 pw.flush();
 System.out.println("Fin del Servidor");
 }catch(IOException e){
 e.printStackTrace();
 }
 }
 public static void main(String[] args) {
 Servidor server = new Servidor();
 server.ejecutar();
 }
}

Implementación Servidor continuo

Añadimos un nuevo método al que llamaremos ejecutar infinito:

http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:imagen_2023-10-05_120946334.png

2026/02/10 09:04 5/8 Sockets

Knoppia - http://knoppia.net/

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Scanner;

public class Servidor {
 public static int PUERTO = 5000;//Indicamos el puerto del servidor
 public void ejecutar() {
 try {
 System.out.println("Lanzando Servidor...");
 ServerSocket serverSocket = new ServerSocket(Servidor.PUERTO);
 //Lo hacemos contínuo
 //Scanner sc = new Scanner(System.in);
 //sc.nextLine();
 Socket socket = serverSocket.accept();
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Buffer entrada
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer salida
 String cadenaRecibida = br.readLine();
 pw.print(cadenaRecibida);
 pw.flush();
 System.out.println("Fin del Servidor");
 }catch(IOException e){
 e.printStackTrace();
 }
 }
 public void ejecutarInfinito() {
 try {
 System.out.println("Lanzando Servidor...");

Last update: 2023/10/11 10:47 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1697021249

http://knoppia.net/ Printed on 2026/02/10 09:04

 ServerSocket serverSocket = new ServerSocket(Servidor.PUERTO);
 Socket socket = serverSocket.accept();
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Buffer entrada
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer salida
 while(true) {
 System.out.println(br.readLine());
 pw.println(br.readLine());
 pw.flush();
 }
 }catch(IOException e){
 e.printStackTrace();
 }
 }
 public static void main(String[] args) {
 Servidor server = new Servidor();
 server.ejecutarInfinito();
 }
}

Implementación cliente Continuo

Añadimos un nuevo método al que llamaremos ejecutar infinito:

package jelouda;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

http://knoppia.net/lib/exe/detail.php?id=dad%3Asockets&media=dad:imagen_2023-10-05_120728806.png

2026/02/10 09:04 7/8 Sockets

Knoppia - http://knoppia.net/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Scanner;

public class Cliente {
 public void ejecutar() {
 try {
 System.out.print("Lanzando conexión....");
 Socket socket = new Socket ("127.0.0.1",
Servidor.PUERTO);//Conectamos al servidor
 System.out.println("[OK]");
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Bufer de lectura
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer de escritura
 String cadenaRecibida = br.readLine();
 System.out.println(cadenaRecibida);
 pw.println("cadena recibida" + cadenaRecibida);
 pw.flush();
 System.out.println("Fin del Cliente");
 }catch(IOException e){
 e.printStackTrace();
 }
 }
 public void ejecutarInfinito() {
 try {
 System.out.print("Lanzando conexión....");
 Socket socket = new Socket ("127.0.0.1",
Servidor.PUERTO);//Conectamos al servidor
 System.out.println("[OK]");
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));//Bufer de lectura
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));//Buffer de escritura
 String lineaLeida ="";
 Scanner teclado = new Scanner(System.in);
 while(true) {
 lineaLeida = teclado.nextLine();
 pw.println(lineaLeida);
 pw.flush();
 }

 }catch(IOException e){
 e.printStackTrace();
 }
 }
 public static void main(String[] args) {
 Cliente client = new Cliente();
 client.ejecutarInfinito();

Last update: 2023/10/11 10:47 dad:sockets http://knoppia.net/doku.php?id=dad:sockets&rev=1697021249

http://knoppia.net/ Printed on 2026/02/10 09:04

 }
}

From:
http://knoppia.net/ - Knoppia

Permanent link:
http://knoppia.net/doku.php?id=dad:sockets&rev=1697021249

Last update: 2023/10/11 10:47

http://knoppia.net/
http://knoppia.net/doku.php?id=dad:sockets&rev=1697021249

	Sockets
	Cliente
	Servidor
	Implementación Cliente
	Implementación Servidor
	Implementación Servidor continuo
	Implementación cliente Continuo

