2025/11/26 02:58 1/4 Tema 2

Tema 2

Industrial Control System

También conocidos como ICS e IACS son sistemas formados por equipos interconectados que controlan monitorizan y administran grandes sistemas de producción industrial. Algunas formas, de forma no muy correcta se usan como sinónimos:

- PCS (Process Control System) o PLC (Proglamable logic controller)
- DCS (Distributed control System)
- SCADA (Supervisory Control and DAta Acquisition system)

El ICS engloba todo lo aquí definido:

- ICS: Sistema de control que abarca todo esto.
- SCADA: Gran área geográfica
- DCS: Una sola ubicación
- PLC: Una unidad de proceso

PLC

Hardware embebido que controla localmente algún dispositivo, fueron creados para sustituir circuítos lógicos basados en relés. Se caracterizan por:

- Fáciles de programar
- Fáciles de mantener y reparar
- Pequeño Tamaño
- Se pueden comunicar con dispositivos de una planta industrial y con los sistemas remotos de control central

En la actualidad pueden hacer más cosas:

- Mayor potencia de procesamiento
- Soporte para entradas/salidas digitales y analogicas
- Implementan distintas variantes de lazos de control
- Soportes para nuevos protocolos de comunicación

Normalmente se usa un software especializado basado en una interfaz WYSIWYG en la que se pueden ir interconectando las distintas entradas y salidas.

SCADA

Capa de software por encima de los PLC que se limita a realizar tareas de supervisión (Aunque en la actualidad también pueden hacer tareas de control.). Las principales funcionalidades de un SCADA son:

- Adquisición de datos
- Presentación de datos a través de un HMI (Humam-Machine Interface) personalizado
- Control de sistemas dispersos geograficamente.

Los SCADA tienen varios componentes:

- RTU: Remote Terminal Unit, compuestos por sensores y actuadores.
 - Suelen estar dispersos geográficamente
 - No actualizan constantemente debido a que en los ambientes industriales hay muchas interferencias que pueden producir el envío de datos erróneos, por lo que solo suelen indicar al SCADA cambios de estado
 - Se suelen comunicar por protocolo profinet (Siemens) o profibus.

DCS

Similar a un SCADA, con la diferencia de que muestran datos en tiempo real.

Protocolos de comunicación

- SCADA: comunicación con los sitemas de supervisión
- FIELDBUS: Comunicación con sistemas de control
- ModBus: Modicon Communication Bus, protocolo más antiguo y extendido para ICS.
 - Abierto y gratutio
 - Nivel de aplicación
 - Comunicación en texto plano
 - Comunicaciones Reguest o Reply
 - Problemas de seguridad:
 - Ausencia de autenticación
 - Ausencia de cifrado
 - No hay mecanismos de supresión de broadcast (facilita los ataques DDOS)
 - Los mensajes permiten reprogramar los dispositivos
 - Recomendaciones
 - Usar solo en entornos controlados
 - Hacer uso de IDS y/o IPS para monitorizar los comandos ejecutados
 - En áreas críticas del sistema usar sistemas más sofisticados
 - Firewalls a nivel de aplicación
 - Filtros específicos para protocolos industriales
 - Sistemas de monitorización de datos para validar sesiones y prevenir el secuestro de sesiones modbus.
- OPC: Es un framework de protocolos que usa una serie de API de protocolos que usa windows para comunicar equipos.
 - ∘ OPC = OLE Process Control
 - OLE = Object Linking and Embedding, protocolo de microsoft.
 - Al usar el API DCOM (Distributed Component Object Model) de Microsoft se elimina la necesidad de usar drivers específicos para cada dispositivo.
 - Hay 2 esquemas: Classic OPC (DCOM) y OPC UA (unified architecture), siendo la segunda la más actual
 - DCOM: De tiempos de XP se usa con ordenadores normales

http://knoppia.net/ Printed on 2025/11/26 02:58

2025/11/26 02:58 3/4 Tema 2

 UA: Sustituye DCOM, soporta más dispositivos que pcs normales, se adapta a arquitecturas actuales, sirve para cualquier sistema basado en windows. Se puede comunicar con:

- PLC
- PCs de monitorización
- Problemas de seguridad:
 - DCOM es altamente vulnerable a ataques, cualquier vulnerabilidad OLE se puede transladar a OPC
 - AL depender de windows es vulnerable a exploits del sistema operativo.
 - Debido a la dificultad de parchear los sistemas, muchos no están actualizados.
- Recomendaciones de seguridad:
 - Deshabilitar servicios y puertos no necesarios
 - Aislar el servidor OPC para solo comunicarse con dispositivos autorizados.
 - Securizar el servidor OPC como otros hosts tradicionales, incluyendo el uso de firewalls e IDS/IPS.

Diferencias con redes de comunicaciones comerciales

Seguridad

- El impacto de los fallos de seguridad en los ICS son mucho mayores que en otros sistemas por las consecuencias físicas
- Los errores de seguridad suelen ser difíciles de diagnosticar y reparar.
- Es complicado administrar los ICS:
 - Hay mucho software desfasado que no puede ser parcheado
 - No hay entornos amigables para pruebas
 - Los dispositivos están muy dispersos geográficamente y tienen altas restricciones para acceso remoto.
 - Generalmente no se pueden usar ni antivirus ni firewalls
- Existencia de ataques específicos debido al uso de protocolos de red poco típicos.

Industria 4.0

Concepto que representa la evolución de las fábricas tradicionnales hacia las inteligentes las cuales están diseñadas para:

- Ser más eficientes en terminos de administración de recursos
- Tener una flexibilidad alta para adaptarse a los constantes cambios de requerimientos de producción.

Este concepto fue definido por el gobierno aleman en 2011.

Conceptos similares

• Por parte de estados unidos está AMP (Advanced Manufacturing Process), pero resultó en fracaso.

- El concepto lloT (industrial Internet of Things) es el que más se suele aplicar en la actualidad.
- Internet Plus: darle funcionalidades adicionales al internet actual para aplicarlo a finanzas, industria. etc...
- Por otro lado está Made in China 2025
- Industria 5.0: Busca personalizar productos a escala masiva.
 - Se centra en las pesonas, su ecosistema y su protección
 - Busca mejorar la vida de las personas
 - Busca la sostenibilidad
 - Resilencia: Busca reducir la dependencia en factores externos.
 - Cooperación entre humanos y máquinas
 - Cognitive computing

Pilares de la industria 4.0

- Robótica y autómatas: Permite automatizar tareas industriales sistemáticas por medio de robots. Formados por lo siguiente
 - Controlador
 - ∘ Eie I/O
 - End Effector I/O: Brazo con servomotores
 - Operator: persona que manda órdenes a la máquina

From:

http://knoppia.net/ - Knoppia

Permanent link:

http://knoppia.net/doku.php?id=master_cs:csiot:tm2&rev=1742392846

Last update: 2025/03/19 14:00

http://knoppia.net/ Printed on 2025/11/26 02:58