
2026/02/02 06:51 1/8 Análisis del Malware Tema 1

Knoppia - http://knoppia.net/

Análisis del Malware Tema 1

Introducción

El malware se define como un software malicioso que realiza acciones mal intencionadas.
Generalmente e busca analizar el malware para asesorar daños, identificar vulnerabilidades, capturar
a los “chicos Malos” y responder respuestas.

¿Por que se crea malware?

El primer malware fue un gusano que trataba de medir el tamaño de internet en los 80. El gusano se
comportaba como una forkbomb y se propagó de forma increíblemente rápida. En los 90 los virus se
hicieron para ganar gloria personal, haciendo que el malware mostrara mensajes en pantalla. En la
actualidad se crean para ganari dinero, robar contraseñas, información bancaria o secretos
industriales. En el futuro se cree que se utilizarán para guerra cibernética con malware que utilizaría
vilnerabilidades de tipo Zero Days con el objetivo de causar daño en instalaciones físicas.

Cuestiones prácticas

¿Cual es el objetivo de este malware?
¿Como y cuando fui infectado?
¿Quien me ha establecido como objetivo?
¿Como evitarlo?
¿Que han obtenido mediante el malware?
¿Es capaz de reproducirse?
¿Como lo puedo encontrar en otro lugar?
¿Como se previene otra futura infección?

Cuestiones técnicas

¿Cuales son los indicadores de red?
¿Cuales son los indicadores a nivel de host?
¿Persistencia?
¿Fecha de compilación?
¿Fecha de instalación?
¿Leguaje de programación?
¿Empaquetado?
¿Tiene funcionalidades rootkit?

Términos populares de análisis del malware

Virus: Código que va unido a una aplicación que busca replicarse en aplicaciones similares
hasta que pueda ejecutar una payload.
Gusano: Malware que se propaga muy rápido a través de la red.



Last update: 2024/09/30 15:48 mwr:tema1 http://knoppia.net/doku.php?id=mwr:tema1&rev=1727711303

http://knoppia.net/ Printed on 2026/02/02 06:51

Troyano: Malware que se camufla como otra aplicación para infectar el sistema.
Spyware/adware: Malware para espiar o meter publicidad
Backdoor: Vulnerabilidad dejada de forma deliberada por el fabricante
Rootkut sniffers: Rootkit que escucha todos los paquetes que pasan por la red.
Exploit: comandos que toman ventajas de vulnerabilidades del sistema
Disassembler: Programa que recibe un ejecutable y genera un archivo de texto con el código en
del programa en ensamblador.
Decompiler: Toma un archivo binario y trata de producir código de alto nivel usando este como
base
Debugger: Programa que permite observar el código mientras se ejecuta.
Sinkhole: host de la red interna que recibe tráfico malicioso redireccionado desde un dominio
malicioso.
Intrusion Detection System (IDS): Sistema de Software/Hardware que trata de detectar uso no
autorizado de la red.
Intrusion Prevention System (IPS): Intentan detener un intruso que se haya colado en el
sistema.
Operations Security (OPSEC): Proceso de prevenir que un adversario obtenga información
sensible.
Ingeniería inversa
Ransomware: malware que pide rescates para recuperar un sistema
Creeping
Phising
Pharming
Bloatware
Doxing
Flaming

Webs interesantes

Ciberthreat live map

Metas y Tipos de Análisis del Malware

Objetivos del análisis del malware

Se busca obtener un entendimiento de como un malware específico funciona para construir defensas
para proteger nuestros sistemas en el futuro.

Tipos de análisis del malware

Análisis estático: Análisis del código para obtener un mejor entendimiento del malware. No se
ejecuta.
Análisis dinámico: Se analiza como se comporta el malware cuando es ejecutado, observando
con que se trata de comunicar y como funciona.

Se deben realizar estos dos tipos de análisis para obtener un entendimiento completo de como

http://cybermap.kaspersky.com


2026/02/02 06:51 3/8 Análisis del Malware Tema 1

Knoppia - http://knoppia.net/

funciona un malware. Aunque ambos tipos consiguen lo mismo, se necesitan diferentes habilidades
para realizarlos.

Análisis estático de código

El análisis estático es más seguro ya que no se está ejecutando código malicioso, pero es muy lento y
difícil ya que se necesitan muchas herramientas tanto gratuitas como de pago para proceder. cuando
se hace ingeniería inversa se deben usar desensambladores, debuggers y compiladores (Cuidado con
las leyes ya que en algunos países el uso de estas herramientas se puede considerar piratería)

Análisis dinámico del comportamiento

Es una manera rápida de analizar un malware. Es muy importante que el laboratorio de malware no
esté conectado a una red externa. Este tipo de análisis observa como se comporta un malware y que
cambios trata de realizar en el sistema. Cuando se haga este análisis se debe estar atento de que
cambios han surgido en el sistema, así como si hay comportamiento poco usual por parte del equipo.
Cambios que pueden ser indicativos de algo malo:

Archivos añadidos o modificados
Nuevos servicios de red instalado
Nuevos procesos arrancando
Modificaciones de registro
Modificaciones de ajustes del sistema
Cambio en configuraciones de red (DNS)

Además del comportamiento del sistema también se debe analizar el tráfico de red.

Malware Armado: características

Encriptado: el contenido se oculta encriptándolo.
Compresión
Ofuscación: Se trata de dificultar ver que hace el código haciéndolo deliberadamente difícil de
entender.
Anti-parcheo (CRC check): Detecta si se han realizado modificaciones. De forma que el malware
es capaz de saber si ha sido manipulado en el proceso de ingeniería inversa.
Anti-tracing: si detecta que se está tratando de ver función por función que hace el código corta
la ejecución.
Anti-desempaquetado
Anti-VMware: Detecta si se está ejecutando en una máquina virtual y en ese caso o no se
ejecuta o corta la ejecución. Para detectar esto puede mirar la información del sistema o el
historial del navegador.
Self-Mutating (Poli/metamorpic): Puede cambiar de forma o tener una forma diferentes;
Fechas restrictivas: Si ha pasado cierta fecha el malware no se ejecutará o restringe en que
fechas se puede ejecutar.
Protección por contraseña: Para ejecutarlo se necesita una contraseña.



Last update: 2024/09/30 15:48 mwr:tema1 http://knoppia.net/doku.php?id=mwr:tema1&rev=1727711303

http://knoppia.net/ Printed on 2026/02/02 06:51

La arquitectura x86

En un ordenadores existen diferentes capas de abstracción, estando en lo más bajo el hardware,
seguido del lenguaje máquina (Binario u octal), el ensamblador (Instrucciones), el kernel del sistema
operativo y arriba de todo los programas. Estas capas se podrían separar en 2 tipos: hardware y
sofrware.

Ingeniería inversa

En algunos lenguajes existen decompiladores que permiten obtener una descripción de un código a
alto nivel. Normalmente el código en ensamblador es la capa más alta de abstracción que puede ser
recuperada de forma fiable y consistente. Entender ensamblador es muy importante para el análisis
de malware. El lenguaje ensamblador depende de la familia de procesadores (X86, MIPS, DEC Alpha,
ARM, PowerPC…)

La arquitectura x86

Es la arquitectura más atacada ya que es la más popular. La mayoría del mercado actual esta tomado
por equipos basados en la arquitectura x86. Ejemplo de instrucción en ensamblador y en lenguaje
máquina:

mov ecx, 0x42 -> B9 42 00 00 00

Intrucciones: cada una corresponde a un código de operación que puede realizar el procesador
Operadores: Se usan para identificar los datos usados por una insturcción. Hay 3 tipos:

Operadores inmediatos con valores fijos
Operadores de registro
Direcciones de memoria en corchetes.

registros

Registros generales: usados por el procesador durante la ejecución
Registros de segmento: Usados para mantener localizadas secciones de memoria
Flags de estado: se usan para tomar decisiones
Puntero de instrucción: Se usa para localizar cual es la siguiente instrucción

Flags

El registro de flags tiene un tamaño de 32 bits, siendo cada bit un flag, de forma que si es 1, esta
activado y si es 0 esta desactivado. Se usan para controlar operaciones del procesador o indicar
resultados de operaciones. Tipos de flags:

ZF(Zero Flags): Cuando el resultado de una operación es 0.
CF(Carry Flag): Cuando el resultado de una operación es demasiado grande o demasiado
pequeño para su destino



2026/02/02 06:51 5/8 Análisis del Malware Tema 1

Knoppia - http://knoppia.net/

SF(Sing Flag): Cuando el resultado de una operación tiene signo negativo
TF(Trap Flag): Usado para debug. Cuando está activada el procesador solo ejecuta una
instrucción cada vez.

Instrucciones de datos

mov, destino, origen: mueve datos de un origen a un destino
lea destino, origen: carga una dirección efectiva a un destino

Instrucciones aritméticas

add/sub destination, value
mult/div value
operadores lógicos or y xor

or/ y /xor destino, valor
Se usan como una forma rñapido de establecer eax a 0

shr/shl destino, contador
ror/rol: instrucciones de rotación.

Llamadas de función

Ejecutan subrutinas para ejecutar algo

Function prologue: Unas pocas líneas de código al inicio de la función, prepara los
stacks/registros para usarlos en la función
Function epilogue: Unas pocas líneas de código al final de la función, reestablece los
stacks/registros a los valores antes de la llamada a la función.

El Stack

Instrucciones: push, pop, call, ret… Convenciones:

cdecl: llamar a una función vacía el stack
stdcal: La función llamada vacía el stack antes de terminar
fastcall: Los primeros argumentos se pasan en los registros, normalmente edx y ecx.

Teniendo una función dada del frame del stack:

Las variables locales estarán en un offset negativo de EBP.
Los argumentos de las funciones tendrán un offset positivo.

Condicionales

test valie, value: es como un AND, activa la ZF Zero Flag
cmp destination, source: Equivalente a la instrucción sub pero no afecta a los operadores.



Last update: 2024/09/30 15:48 mwr:tema1 http://knoppia.net/doku.php?id=mwr:tema1&rev=1727711303

http://knoppia.net/ Printed on 2026/02/02 06:51

branching

jmp ubicación: una rama es una secuencia de código que es condicionalmente ejecutada para
saltar instrucciones.

Repeating

rep instructions: set de instrucciones para manipular buffers de datos como arrays de bits
usando movsx, cmpsx, stosx, scasx, siendo la x = b(byte, 8 bits), w(word, 16 bits), d(double
word, 32 bits)

La arquitectura de procesos de windows

Nivel Kernel

Windows API

Forma standar de interactuar con el sistema operativo Windows a través de DLLs (Dynamic Link
Library). Las librerías principales son las siguientes:

Kernel32.dll/ntdll.dll: Bajo nivel, interactúa con el kernel haciendo syscalls, Estas dos librerías
están siempre cargadas.
Wininet.dll/ws2:32.dll: Se encarga de temas de redes
advapi32.dll: Advanced API managing services. Administra servicios, procesos, permisos,
criptografía, etc…

Process

Es un contenedor que tiene su propio:

dirección virtual en el espacio
Hilos
Bookkeping information, almacenada como estructuras de datos o listas enlazadas

Apis como:

CreateProcess
CreateProcessAsUser
EnumProcesses.

Thread

Son planificados y ejecutados por el sistema operativo

Pertenecen a un solo proceso y comparten su espacio de dirección



2026/02/02 06:51 7/8 Análisis del Malware Tema 1

Knoppia - http://knoppia.net/

Tienen su propio thread context y stack

en API:

CreateThread
CreateRemoteThread

Thread Context mantiene el control del estado de cada hilo:

Es necesario cuando hay muchos hilos en un sistema
El estado viene definido por valores de registro.

Nivel Usuario

Task Scheduler: Asigna tiempos de CPU en función de como esté el sistema en el momento.

DLL

Dynamin Link Library. Todos los rpocesos comparten las DLL cargadas, esto ahorra almacenamiento
ya que solo se almacenan en memoria una sola vez. Los cambios solo afectan a cada espacio de
dirección de proceso. El método DllMain es llamado automáticamente cuando se carga una DLL. en
API:

LoadLibrary
GetProcAddress

Registro

Se usa para almacenar información de todo:

Clave: similar a una carpeta
Value Entry: Similar a un archivo.

Se puede navegar por el registro con regedit.

En API:

RegOpenKey
RegSetValue
RegEnumKey

Service

Similares a un proceso, pero son instalados en el disco o en el registro. El programador puede
interactuar con los servicios mediante el service manager “services.exe” que permite arrancar, parar,
suspender, programar o autoarrancar los servicios.

en API:



Last update: 2024/09/30 15:48 mwr:tema1 http://knoppia.net/doku.php?id=mwr:tema1&rev=1727711303

http://knoppia.net/ Printed on 2026/02/02 06:51

CreateService
OpenSCservice

Handle

Es un puntero abastracto a algo:

Un proceso específico, archivo, clave de registro, service, etc….
A veces es un puntero de memoria.

COM

Component Object Model es un estándar de interfaz binaria creada por microsoft en 1993. Es una
forma de lenguaje neutral de implementar objetos que pueden ser usados en entornos diferentes
unos de los otros. Es usa para habilitar comunicación entre procesos y la creación de objetos en un
rango enorme de lenguajes de programación y ha sido la base para muchas otras tecnologías y
frameworks de microsoft.

Es un ejecutable de 8 bits de la época de CP-M y MS-DOS con un tamaño máximo de 64KB para
almacenar código y datos. Algunos malware se aprovecha del desconocimiento de los archivos con
extensiones .COM ya que la gente los confunde con enlaces .com.

From:
http://knoppia.net/ - Knoppia

Permanent link:
http://knoppia.net/doku.php?id=mwr:tema1&rev=1727711303

Last update: 2024/09/30 15:48

http://knoppia.net/
http://knoppia.net/doku.php?id=mwr:tema1&rev=1727711303

	Análisis del Malware Tema 1
	Introducción
	¿Por que se crea malware?
	Cuestiones prácticas
	Cuestiones técnicas
	Términos populares de análisis del malware
	Webs interesantes

	Metas y Tipos de Análisis del Malware
	Objetivos del análisis del malware
	Tipos de análisis del malware
	Análisis estático de código
	Análisis dinámico del comportamiento
	Malware Armado: características


	La arquitectura x86
	Ingeniería inversa
	La arquitectura x86
	registros
	Flags
	Instrucciones de datos
	Instrucciones aritméticas
	Llamadas de función
	El Stack
	Condicionales
	branching
	Repeating


	La arquitectura de procesos de windows
	Nivel Kernel
	Windows API
	Process
	Thread

	Nivel Usuario
	DLL
	Registro
	Service
	Handle
	COM




