
2026/01/12 17:22 1/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

[SAP] TurboResumenExpresSap.txt

Tema 1: Introducción a las aplicaciones
seguras

1.1 Definiciones

Autenticación: Un usuario tiene que demostrar que es quien dice ser. Se puede realizar de
diferentes formas:

Usuario y contraseña: Las contraseñas deben ser robustas para prevenir ataques de
fuerza bruta, además de ser guardadas cifradas por si la BBDD que las almacena es
comprometida

Las contraseñas no siempre se transmiten por un medio seguro (HTTP)
La misma contraseña puede ser utilizada en sitios diferentes por el mismo usuario.

Tarjetas inteligentes: Se utiliza una smart card con un certificado digital protegido por pin
Biometría: Se identifica al usuario usando métodos biométricos que lo identifican en
función a sus rasgos fisiológicos.

Biometría Fisiológica: Huella dactilar, reconocimiento facial…
Biometría conductal: Reconocimiento por voz, movimientos….

Certificado digital: Se consta de un par de claves criptográficas (pública y privada) y se
realiza la verificación de este usando ciptografía asimétrica. Los datos que se cifran con la
clave pública solo pueden ser descifrados por la privada.

X.509 es el estándar que define el formato de los certificados digitales, conteniendo
info sobre la entidad propietarria del certificado, la clave pública de esta e
información sobre la entidad certificadora que ha emitido el certificado.

Autorización: cuando un usuario se autentica, una política de autorización establece las
acciones que puede realizar el usuario y a que recursos puede acceder.
Control de acceso: Se encarga de verificar que un usuario tiene los permisos para realizar una
acción. En resumidas cuentas, el control de acceso se encarga de hacer cumplir las políticas de
autorización.

1.2 Aplicaciones y servicios con estado (stateful)

En las aplicaciones con estado, el servidor mantiene información sobre el cliente desde que se
conecta hasta que se desconecta.

La info de cada cliente se guarda en un objeto llamado sesión.
Se suele implementar con estructura de mapa de pares clave-valor.
Dentro de una sesión se pueden almacenar datos relevantes del usuario, además de otro
tipo de info.
La sesión puede ser presistente, estando almacenada en base de datos o puede perderse
cada vez que se reinicie el servidor.
En la API de servlets de Java la sesión se implementa con el objeto “HttpSession” y se
puede obtener con “HttpServletRequest”

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

HttpSession HttpServletRequest.getSession (boolean Create): Permite obtener la
sesión asociada a la petición
HttpSession.setAttribute(String name, Object value): Almacena un objeto en la
sesión identificado por nombre
httpSession.getAttrubute(String name): Permite obtener un objeto almacenado en
la sesión a partir de su nombre.

Para identificar a que cliente pertenece cada sesión se suelen usar las Cookies.
Cuando el server pide una petición del cliente crea una sesión y responde a la petición
con la cookie de sessión (JSESSIONID en java o ASP.NET_SessionId en .NET). En las
siguiente peticiones el cliente enviará la cookie de sesión.
Las cookies permiten el almacenamiento de info en el cliente y se suelen usar para:

Mantenimiento de la sesión
Personalización
Tracking

El servidor envía las Cookies al cliente en la cabecera HTTP “Set-Cookie” y el cliente las
envía con “Cookie”
En una cookie se pueden especificar parámetros como

Expires: Indica una fecha de caducidad. (Usado en cookies persistentes)
Max-Age: Limita el tiempo de vida de la cookie estableciendo un máximo de tiempo
en segundos.

Si no se especifica el tiempo, la cookie es eliminada al cerrar el navegador.
Se usa en cookies persistentes.

Secure: Se enviarán las cookies por HTTPS
HttpOnly: Las cookies no serán accesibles desde JavaScript
Domain: Especifica los subdominios a los que se puede enviar la cookie
Path: Indica los direcctorios a los que se enviará la cookie
Same Site: permite especificar que no se envíe la cookie si la petición viene de un
sitio diferente.

Strict: solo se envía al mismo domino de la cookie
Lax: Se puede enviar a un dominio externo cuadno la petición cambia
visiblemente la URL (Bloquea iFrames y AJAX)

Cuando un navegador no soporta cookies, la sesión puede ser manejada por reescritura
de URL

1.3 Aplicaciones y servicios web sin estado (stateless)

En las aplicaciones stateless el server no almacena información sobre el estado del cliente, las
sesiones no existen. El server procesa las solicitudes sin tener en cuenta peticiones anteriores del
cliente. Las peticiones realizadas deben incluir la información necesaria para que el server pueda
identificar al usuario.

La info necesaria para identificar al usuario se enviará en la primera conexión con el server una
vez realizada la autenticación de forma exitosa.
En las siguientes peticiones el cliente manda su información identificativa:

De forma eficiente: No será necesario acceder a una BBDD para identificar al usuario
De manera segura: La información debe garantizar que los datos no son manipulados de
forma maliciosa.

Para almacenar esta información se usan JSON Web Tokens (JWT), que guardan información del
usuario y mantienen la integridad de los datos a través de una firma.

2026/01/12 17:22 3/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

Si el token contiene info sensible se puede cifrar
La transmisión de estos tokens se pueden hacer mediante Cookies o Cabeceras HTTP.

1.4 Aplicaciones Web tradicionales y SPA

En las aplicaciones tradicionales, cada petición generada por un evento del usuario produce
una recarga completa de la página, perdiendo el navegador el estado que tenía antes de la
recarga. Esto dificulta hacer interfaces de usuario interactivas
En las aplicaciones web SPA (Single Page Application) no se produce una recarga de la
página tras un evento de usuario. En este caso solo se modifica un fragmento del arbol DOM,
permitiendo itnerfaces más interactivas.

Tema 2: Vulnerabilidades y mecanismos de
prevención

2.1 Marcos de referencia

MITRE (MITRE): Organización encargada de registrar y publicar información relativa a
vulnerabilidades y ataques conocidos dentro del ámbito de la seguridad.

CWE (Common Weakness Enumeration): Clasificación de debilidades de software.
Dirigido a desarrolladores y profesionales de la seguridad

Se catalogan debilidades o malas prácticas de programación que pueden dar lugar
a vulnerabilidaeds
Se recomienda conocer esta lista a la hora de desarrollar cualquier tipo de software.
La CWE tiene diferentes tipos de clasificaciones, desde listado de todas las entradas
hasta agrupaciones por criterios

Agrupación de vulnerabolidades relacionadas con la investgación
Agrupación de vulnerabilidades relacionadas con el desarrollo
Agrupación de vulnerabilidades relacionadas con el hardware

Los tipos delemenetos del catálogo del CWE son los siguientes:
Clases: Vulnerabilidades descritas de forma genérica
Vulnerabilidades base: Descritas de forma báscia pero con suficientes
detalles como para detectarlas y prevenirlas
Variantes: vulnerabilidad descrita de forma muy detallada
Composiciones: elemetno compuesto de dos o mas vulnerabilidades
Vistas: Subconjunto de elementos agrupados a mejorar la viusalicación dentro
de la web del CWE
Categorías: Agrupación de elementos que comparten las mismas
características.

CVE (Common Vulnerabilites and Exposures): Lista de vulnerabildiades conocidas
detectadas en programas o librerías.

Cada entrada del CVE explota uno o varios tipos de vulnerabilidades, por lo que se
asocian a una o más entradas de CWE
Normalmente el formato que usan es “CVE-<Año>-<Número>”

Las entidades que designan los identificadores CVE se denominan CNA (CVE Numbering

https://www.mitre.org
https://cwe.mitre.org
https://cve.mitre.org

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

Authorities)
La principal CNA es el MITRE
Algunas compañías que participan en el programa también pueden identificar CVEs

NVD (National Vulnerability Database): Proyecto del gobierno de EEUU encargado de recopilar
y gestionar info sobre vulnerabildiades. Contiene los datos de CVE ampliados con análisis
adicionales.
CAPEC (Common Attack Pattern Enumeration and Classification): Catálogo de patrones de
ataque (Recopilación de métodos que se utilizan para explotar vulnerabilidaeds). Cada patrón
de ataque se detalla con una descripción, los pasos para realizar el ataque, prerrequisitos
necesarios y posibles soluciones y mitigaciones.
CVSS (Common Vulnerability Scoring System): Métrica para determinar la criticidad e impacto
de las vulnerabildaes. Es gestionado por el FIRST (Forum of Incident Response and Security
Teams), una confederación internacional de equipos de respuestas a incidentes

Métrica Base: Cualidades intrínsecas independientes del entrono y tiempo:
Vector de ataque (Local, lan, remoto…)
Complejidad del ataque
Privilegios necesarios (autenticación)
Métricas de impacto sobre la confidencialidad, integridad y disponibilidad

Métrica temporal: Características que varían con el timepo
Explotabilidad
Estado de la medida correctora
Fiabilidad del informe sobre la vulnerabilidad

Métrica de entorno: Características relacionadas con el entorno que sufre el problema
CWSS (Common Weakness Scoring System): Mecanismo que permite priorizar las debilidades
en el software. Agrupa varios tipos de métricas

Base: Riesgos inherentes a la vulnerabilidad
Superficie de ataque: Barreras que el ataque debe superar
Entorno: Características específicas de un entorno concreto en el que se ha encontrado la
vulnerabilidad

OWASP (Open Web Application Security Project): Comunidad dedicada a promover y mantener
diferentes materiales relacionados con la seguridad.

OWASP Vulnerable Web Application Directory: Colección de aplicaciones web vulnerables
OWASP Testing Guide: Metodología para realizar una auditoría de seguridad sobre una
aplicación web.
OWASP Top 10: Los 10 riesgos de seguridad más importantes en aplicaciones web.

A01:2021 - Broken Access Control: Vulnerabilidades en el control de acceso,
detectado en el 94% de las aplicaciones web analizadas.
A02:2021 - Cryptographic Failures: Problemas criptográficos que peuden derivar en
la exposición de datos sensibles.
A03:2021 - Inyección de Código: Detectado en el 94% de las aplicaciones
analizadas.
A04:2021 - Diseño Inseguro: Diversos problemas estructurales que pueden resultar
en riesgos de seguridad
A05:2021 - Configuración de seguridad incorrecta: Problemas de seguridad que
podrían compormeter el 90% de las aplicaciones analizadas
A06:2021 - Utilización de componentes obsoletos: Al utilizar librerías de terceros se
deben monizar los problemas de seguridad que puedan ir apareciendo en estas.
A07:2021 - Problemas de identificación y autenticación
A08:2021 - Problemas de integridad de la aplicación o de los datos
A09:2021 - Problemas en el log y la monitorización
A10:2021 - Falsificación de peticiones realizadas por el servidor: Se produce cuando

https://nvd.nist.gov
https://capec.mitre.org
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

2026/01/12 17:22 5/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

la aplicación realiza peticiones al exterior con URLs proporcionadas por el usuario.

2.2 Vulnerabilidades en el tratamiento de los datos de
entrada

Una vulnerabilidad es una debilidad en alguno de los componetnes de un sistema informático que
puede ser explotada por un atacante para causar algún tipo de daño. La debilidad más común suele
ser el no validar losd atos de entrada provenientes del usuario o del entorno.

2.2.1 Inyección de código

Las vulnerabildiades de inyección de código utilizan como datos de entrada determinadas palabras o
tokens especiales usados en el lenguaje en el eque están programadas. Cuando estos datos de
entrada no se validan para tratar las palabras especiales, una entrada de un usuario puede cambiar la
semántica del mensaje original, causando daños.

2.2.1.1 Inyección SQL

Se produce cuando:

Los datos de entrada de un usuario se utilizan para componer una consulta SQL
Los datos incluyen palabras especiales SQL como comillas o puntos y comas
El uso de estas palabras especiales puede cambiar la semántica de la consulta de forma que se
ejecute algo diferente contra la base de datos.
Permite ejecutar consultas de borrado o modificación

Un ataque de inyección SQL puede resultar en revelación de información o borrado de datos
importantes. Un ejemplo de inyección SQL sería:

Tenemos las siguientes casillas:
Email
Password

Normalmente estas casillas recibirían un email y la contraseña y se realizaría una consulta SQL
como la siguiente:

String consulta = "SELECT * FROM users WHRE email='" + email + "' AND
password='" + password + "'";

Si alguien introdujera lo siguiente en la casilla de email:
Email: email@email.com' OR '1' = '1' AND password='any'

Se realizaría un ataque de inyección SQL ya que la consulta se vería modificada y ahora sería
de la siguiente forma:

String consulta = "SELECT * FROM users where email='email@email.com' OR '1'
= '1' AND password='any'"

Esta nueva consulta permitirá acceder directamente, pasando por encima de los sistemas de

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

autenticación.

Otras formas de realizar ataques de inyección SQL serían las siguientes:

Otras técnicas de inyección SQL intentan explotar características o sintaxis específica de algún
gestor de bases de datos concreot, identificando qué gestor de BBDD se usa para almacenar la
información mediante el análisis de mensajes de error de dicho gestor, a esto se le llama
Database Fingerprint. Esto se puede prevenir ocultando los mensajes de error para que no
sean visibles.
Blind SQL Inyection: Tipo de inyección en la que el atacante genera consultas booleanas para
descubrir información de forma progresiva, se suele combinar con ataques de fuerza bruta de
diccionario. A veces se puede usar en aplicaciones que no muestran mensajes de error.

Se pueden prevenir inyecciones SQL de las siguientes formas:

Prepared Statements: Se usan consultas parametrizadas, lo que evita la construcción de una
consulta a través de concatenación de cadenas de texto

Se encargan de formatear los datos de entrada para generar consultas SQL válidas
Se realiza espacado de las palabras y caracteres reservados de SQL
En Java se usa JDBC para formatear los parámetros de los datos y espacar los datos que
provienen del usuario.
Permieten establecer parámetros cuando se trata de valores de columnas
No permiten establecer parámetros de consulta para nombres de tablas y columnas.

String query = "SELECT email, password, full_name FROM users WHERE email =
?"; #La ? representa los parámetros y se pueden establecer con métodos como
setString, setDate....
PreparedStatement stmt = connection.prepareStatement(query);
stmt.setString(1,email);

Listas blancas: Se recomienda su uso si no se pueden usar Prepared Statements. Se acota un
conjunto de valores válidos, de forma que el sistema rechaza cualquier dato de entrada no
incluído en dicho conjunto.
Escapado Manual: Si no queda más opciones, se puede realizar un espacado de forma manual
de los datos de usuario.

La inyección SQL tiene las siguientes referencias:

CWE-89: Improper neutralization of Special Elements used in a SQL Command
CWE-564: SQL Injection: Hibernate
CAPEC-66: SQL Inyection
CAPEC-7: Blind SQL Inyection
CAPEC-110: SQL Inyection through SOAP Parameter Tampering

2.2.1.2 Inyección en ficheros de log

Los ficheros de log permiten consutrir un historial de todos los eventos que ocurren durante la
ejecución de un programa. Muchas veces se pueden usar para reconsutrir el escenario si se a
producido algún problema. La inyección en ficheros de logn (Log inyection o Log Forgery) se produce
cuando en el Log aparecen mensajes generados a raíz de entradas de usuario que no han sido
correctamente validadas o escapadas.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+preparedstatement

2026/01/12 17:22 7/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

Este tipo de ataque puede tener la siguientes consecuencias:

Falsificación de los regisotros del log para enmascarar otros ataques, dificultando su
localización
Inyección de códugo ejecutable apra explotar capacidades del software de visualziación de
logs.

Para prevenir la inyección en ficheros de log se puede hacer lo siguiente:

Procesar y escapar todas las entradas del usuario
Utiliza las capacidades de la librería que genera los ficheros de log

log4j en java para gestionar mensajes de log enviados desde la aplicación
A la hora de especifica el formato de un mensaje esposible escapar caracteres con
la función “enc”.

Referencias:

CWE-117: Improper output neutralization for logs
CAPEC-93: Log injection-Tampering-Forging
CAPEC-81: Web Logs Tampering

2.2.1.3 Inyección en cabeceras HTTP

Se produce cuando se usan entradas de usuario incorrectamente escapadas para añadir cabeceras
HTTP de forma dinámica e inesperada.

HTTP Response Splitting: El ataque más conocido es la inyección de saltos de línea para
partir la cabecera para insertar contenido adicional

Estos ataques se pueden prevenir de la siguiente forma:

Validar las entradas de usuario mediante una lista blanca
Codificar las entradas de usuario para escapar los caracteres que puedan resultar
problemáticos

Referencias:

CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers
CWE-644: Imporper neutralization of HTTP headers for scripting sysntax
CAPEC-34: HTTP Response Splitting
CAPEC-86: XSS Through HTTP Headers

2.2.1.4 Inyección en SMTP

Se introduce una inyección en un pensaje SMTP cuando un atacante inserta cabeceras adicionales
dentro de un correo electrónico mediante entradas de usuario. Este tipo de ataque se pueden
prevenir de la siguiente forma:

Listas blancas de valroes validos
Escapado de caracteres reservados de SMTP.

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

Referencias:

CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences
CAPEC-134: Email Injection
CAPEC-41: Using Meta-Characters in email headers to inject malicious payloads

2.2.1.5 Inyección de comandos del sistema operativo

Permite la ejecución arbitraria de comandos en el sistema en el que se ejecuta la aplicación. Para
prevenir este tipo de ataque:

Se debe evitar realizar llamadas al sistema operativo desde la aplicación
Validar bien losd atos de entrada mediante escapado o listas blancas.

Referencias:

CWE-78: Improper Neutralization of Special Elements Used un a OS Command
CAPEC-88: OS command injection
CAPEC-248: Command Inyection
CAPEC-15: Command Delimiters

2.2.1.6 Inyección en LDAP

De forma similar a la inyección SQL, se pueden realziar inyecciones mediante el uso de cartacteres
especailes en las entradas de usuario. Para prevenir esto se recomeinda:

Realizar Espacado
Usar Listas blancas
Limitar los permisos de los usuarios de LDAP

Referencias:

CWE-90: Improper neutralization of special elements used un an LDAP Query
CWE-943: Improper Neutralization of special elements y DAta Quering Logic
CAPEC-136: LDAP injection

2.2.1.7 Inyección en XML y Xpath

Se produce cuando los datos de entrada contienen caracteres reservados de XML, de forma que se
genera un documento no esperado. Se puede prevenir este tipo de inyección de la siguiente forma:

Realizar validación de los datos de entrada de usuarios y bloquear los siguientes caracteres:
“ → "
' → '
< → <
> → >
& → &

Las reglas de escapado varían en función de donde se añada el contenido:
En texto dentro de una etiqueta se recomienda escapar los 5 caracteres especiales

2026/01/12 17:22 9/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

aunque la comilla doble, comilla simple y carácter mayor no sería estrictamente
necesario
En los valroes de atributo se recomienda escapar los 5 caracteres, pero el caracter de
mayor no sería necesario escaparlo.
En los comentarios no es necesario escapado
Dentro de un CDATA no se debe realizar escapado
Dentro de las instrucciones de procesamiento tampoco es necesario hacer escapado.

Uso de XML Schemas o DTD (Ojo que pueden ser vulnerables a XEE, inyección de
vulnerabilidades externas)
Algunas APIs permieten establecer variables similares a las sentencias parametrizadas de java

javax.xml.namespace.QName;
javax.xml.xpath.XPathVariableResolver;

Referencias:

CWE-91: XML injection
CWE-643: Improper neutralization of Data Within XPath Expressions
CAPEC-250: XML injection
CAPEC-83: XPath injection

2.2.1.8 Conlusiones de la inyección de código

Siempre que existan metodos para formatear la entradad de datos con métodos estándar como
las sentencias parametrizadas, se deben usar.
Se deben usar listas blancas
En caso de no haber otras opciones se debe realizar Escapado
Algunos lenguajes traen librerías para realizar el escapado de forma automatizada.

2.2.2 Inyección de Javascript

Cross-Site Scripting (XSS) es un tipo de ataque de inyección de código que inyecta código javascript
en el navegador del usuario cuando está accediendo al sitio web afectado. Las consecuencias pueden
ser:

Sustracción de información
Sustracción de credenciales
Secuestro de la sesión e implantación de identidad

2.2.2.1 Tipo 1: Reflected XSS

El servidor lee los datos de la petición y los inserta sin validar en la respuesta, estos datos pueden
contener código ejecutable. El servidor incluye en la respuesta HTTP el código JavaScript que el
atacante ha insertado en la petición. Se añade el contenido JS a la URL, ejecutando el código en el
navegador del usuario. Un ejemplo sería:

http://patata.com/<script>alert("Ejemplo de Reflected XSS")</script>

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

2.2.2.2 Tipo 2: Stored XSS

El atacante consigue insertar texto javascript en la BBDD y pueden generar contenido HTML. Estos
ataques pueden ser muy peligrosos en webs colaborativas como foros o redes sociales.

2.2.2.3 Tipo 0: DOM-Based XSS

La inyección se realiza en el navegador.

2.2.2.4 XFS y ClickJackign

Cross-Frame Scripting (XFS) es un ataque que combina la inyección de JS con el uso de Iframes. A
través del iframe el atacante carga la web legítima con el objetivo de robar info del usuario. El
clickjacking es un ataque que consiste en superponer un inframe transparente sobre la página que
esta viendo el usuario.

2.2.2.5 XSHM

Cross Site History Manipulation (XSHM) es un ataque que se basa en el hecho de que el historial del
navegador contiene entradas a las webs visitadas por el usuario. Este historial se puede accewder
mediante JS con el objeto history.

2.2.2.6 Prevención de la inyección de javascript

Siempre que sea posible se deben usar librerías para realziar los escapados
Regla 0: Evitar siempre que sea posible la inserción de datos inseguros con la regla denyall
Regla 1: Escapar cualquier contenido que se inserte dentro de un elemento HTML
Regla 2: Escapar el contenido insertado dentro de los valores de atributos
Regla 3: Ecapado dentro de etiquetas script o de manejadores de eventos.
Regla 4: Escapado dentro de hojas de estilo CSS
Regla 5: Escapado de enlaces a URLs siempre que sea posible.

2.2.2.7 Prevención de XFS

El servidor web debe enviar la cabecera HTTP X-Frame-Options con uno de los siguientes
valores:

DENY: No mostrar nunca una web dentro de un iframe
SAMEORIGIN: Permitir mostrar una web en un iframe cuando sea del mismo origen
ALLOW-FROM <sitio>: Se permite mostrar webs en iframes siempre que vengan del sitio
definido.

2.2.3 Content Security Policy (CSP)

2026/01/12 17:22 11/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

Es un mecanismo que permite restringir los contenidos que el navegador puede cargar en un sitio
Web. Se centra en detener ataques de inyección de código, centrándose en XSS. Se puede especificar
en una cabecera dentro de la respeusta HTTP que el servidor envía al navegador. Los CSP siguen la
siguiente sintaxis:

Content_security-Policy: <directiva>; <directiva>

Existen directivas para restringir:

El origne de los datos
El documento
En la navegación
Directivas de nontificación de contenido que no cumple la política definida.

2.2.3.1 script-src

Controla de manera exhaustiva el origen de todos los scripts.

Content-Security-Policy: scriptsrc <origen>;
Content-Security-Policy: scriptsrc <origen> <origen>;

Valores de los source:

self: Sitio web de origen
unsafe-evarl: permite el uso de la función eval()
unsafe-inline: permite ejecutar contenido dentro de los scripts

No se recomienda activar ninguno de los valores usanfe para minimizr los riesgos de ataques de
inyuección JS.

2.2.3.2 frame-ancestors

Permite definir cuando es posible incluir un sitio web dentro de un iframe, similar a la cabcera X-
FRAME-OPTIONS

Content-Security-Policy: frame-ancestors 'none';
Content-Security-Policy: frame-ancestors 'self' http://patata.org;

El valor none es equivalente a DENY.

2.2.3.3 report-uri y report-to

Permiten especificar una URL a la que enviar las notificaciones cuando el navegador detecta
contenido que no cumple con la política definida.

Content-Security-Policy: defautl-src https:; report-uri /csp-violation-
report-endpoint/

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

2.2.4 Inyección de entidades externas en XML (XXE)

Es un ataque que afecta al lenguaje XML que consiste en añadir referencias a elementos externos
dentro de un documento XML con el objetivo de causar daño. Se produce un ataque de SSRF (Server
Side Request Forgery) cuando un atacante consigue acceder a un servicio interno de una
organización incluso cuando este servicio se encuentra protegido por un cortafuegos Para prevenir
estos tipos de ataques se pueden usar:

Parsers de XML: Ofrecen diferentes opciones para deshabilitar total o parcialmente el soporte
de entidades externas
Deshbailitar el soporte de DTDs
Configurar una clase para resolver referencias externas: XMLUrlResolver

2.2.5 Deserialización y carga dinámica

2.2.5.1 Deserialización

La serialización es un proceso que transforma un objeto de un lenguaje en un flujo de texto o binario.
La deserialización es el proceso contrario, el cual transforma un flujo de datos en objetos. Se produce
una deserialización insegura cuando no se valida si el flujo de datos de entrada va a crear objetos del
tipo esperado. En java para serializar y deserializar un objeto a XML se pueden usar las siguientes
clases:

java.beans.XMLEncoder
java.beans.XMLDecoder

Si no se hacen validaciones, la deserialización puede ser peligrosa ya que podría permitir la ejecución
arbitraria de cualquier método de cualquier clase de java. Para mitigar este tipo de ataque se puede
hacer lo siguiente:

Añadir validaciones de integridad en los objetos serializados
Validar si el tipo de objeto que se va a crear está dentro de una lista blanca.
Aislar el código que realiza la deserialización para que se ejecute con los minimos permisos
necesarios.
Monitorización de los procesos de deserialización para detectar si un usuario realiza
demasiados intentos.

2.2.5.2 Carga dinámica

Una vulnerabilidad similar a la deserialización es la de la carga dinámica segura (Unsafe reflection). El
API de reflection de algunos leguajes permite crear objetos a partir de su nombre

2.2.6 Desbordamiento de Pila

2026/01/12 17:22 13/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

Se produce un desbordamiento de buffer (Buffer overflow o Buffer Overrun) cuando un programa
permite la escritura de datos mas allá del buffer asignado. La a estructura de memoria de un
programa en C es la siguiente:

Segmento de Texto: Contiene instrucciones ejecutables
Situado debajo del heap y del stack para prevenir ataques de overflow

Segmento de datos no inicializaods (BSS): Contiene variables globales y estáticas inicializadas a
0 o que no tienen inicialización
Segmento de datos inicializados: Contiene variables globales y estáticas inicializadas
explícitamente
Segmento de heap: Comienza después del BSS, crece hacia direcciones altas y contiene la
memoria dinámica con el almacenamiento a largo plazo.

Es común para todas las librerías compartidas y todos los módulos que se cargan de
forma dinámica.
Se manipula con malloc y free en C y con new y delete en C++

Segmento de stack: Estructura LIFO (Last In First Out) localizada generalmente en las zonas
más altas de memoria.

Los elementos que se añaden en la pila cada vez que se llama a una función se llaman
stack frames

Contienen variables locales y parámetros de una función

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

Contienen la dirección de retorno.
Puntero EIP: Apunta a la siguiente instrucción que va a ser ejecutada
Puntero base EBP (base pointer): Apunta al comienzo del stack frame actual
Puntero de pila ESP (Stack Pointer): Apunta al principio de la pila

La estructura de un frame del stack en la siguiente:

Al comienzo de la llamaca a una función se ejecuta un fragmento de ensamblador denominado
secuencia de entrada que:

Guarda en la pila el puntero al frame actual
EBP se establece a ESP con lo que pasa a apuntar al inicio de la pila
Reserva 12 bytes para las variables locales de la función

_Funcion:
 push ebp
 mov ebp, esp
 sub esp, 12

Si la función se invoca con argumentos, los parámetros se añaden al principio del frame con una
llamada call equivalente a push + jump.

push eip + 2
jmp _funcion2

Al terminar la llamada de una función se ejecutan las siguientes secuencias de salida:

Se mueve el puntero ESP al valor de EBP y se libera el espacio de las variables lcoales
Se establece el valor EBP al que tenía antes de la llamada
Devuelve el control a la dirección de retorno.

mov esp, ebp

2026/01/12 17:22 15/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

pop ebp
ret

2.2.6.1 Prevención del desbordamiento de pila

ASLR (Address Space Layout Radomization): Permite distribuir de forma aleatoria los
espacios de direcciones de memoria para evitar que un atacante transfiera el control a una
dirección de memoria conocida
Stack Canaries: Técnica de detección de stack overflow, añade diferentes valores numéricos a
la pila elegidos de forma aleatoria al arrancar el programa, si se modifican estos valores, se
detecta un desbordamiento de pila.

2.2.6.2 Ensamblador x86

Push coloca su operando en el principio de la pila

push <mem>

pop eleimina el elemento situado al principio de la pila y establece su valor en el operando
especificado.

pop <mem>

mov copia el dato referenciado en el segundo operando a la ubicación referenciada en el
primer operando.

mov <destino> <origen>

sub almacena en el primer operando el resultado de restarle a este el valor del segundo

sub <mem1> <mem2>

jmp transfiere el control del programa a la dirección de memoria indicada

jmp <etiqueta>

ret obtiene la dirección del stack y devuelve el control a esa dirección

2.2.7 Validación de datos

La principal utilidad de realizar estas validaciones en el cliente son:

Mejorar la experiencia de usuario
Minimizar el número de peticiones que se realizan al servidor.

Generalmente el comprobar que los datos proporcionados por el usuario son validops sdebería
ahcerse siempre en el servidor. En java hay API de validación estándar formado por las clases del
paquete javax.validation. Este API permite establecer anotaciones sobre los atributros delos objetos
en los que se reciben los datos de entrada.La especificación 2.0 del API de validación de Java incluye

Last update: 2025/07/13 16:32 app:turboresumen https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

https://knoppia.net/ Printed on 2026/01/12 17:22

las siguientes validaciones de serie:

@Null, @NotNull: Permite validar si un objeto es nulo o no
@AssertTrue, @AssertFalse: Permite comprobar el valor de un booleano
@Min, @Max: Permite validar un valor mínimo o máximo
@Size: Permite validar el tamaño de un objeto
@Past, @PastOrPresent, @Future y @FutureOrPresent: Validación de fechas
@Email: Permite valdiar que una dirección de correo electrónico es correcta.

2.3 Vulnerabilidades en la autenticación

Permiten a un atacante obtener las credenciales de los usuarios de la aplicación. Explotan debilidades
como las siguientes:

La aplicación permite contraseñas poco seguras: Pueden ser obtenidas mediante ataques de
fuerza bruta de diccionario.

Se recomienda política de contraseñas que contenga una longitud mínima, un mínimo de
complegidad y valdiar que la cotnraseña no esté dentro del top 1000 Worst Passwords.

No se limita el número de intentos fallidos de autenticación
Las contraseñas se almacenan de forma poco segura
Las contraseñas se transmiten en claro.

Recomendaciones:

Se recomienda no revelar que parte de la autenticación no es correcta, evitando mensajes que
digan que el eMail o la contraseña no son correctos. Con el mensaje de usuario inexistente el
atacante puede tratar de tantear cuetntas de usuarios.
Autenticación multi-factor

Se pueden combinar 2 o más tipos de autenticación (Contraseña, biometría,
certificados…)

Almacenar los datos de usuarios en una BBDD cifrada, de forma que si se compromete esta,
sea más difícil obtener los datos de los usuarios

2.3.1 Hashes

Se recomeinza usar la técnica Hash and Salt, que usa una función criptográfica de hash
añadiendo ruido de por medio.
Como los hashes son irreversibles, son más recomendados que el típico cifrado.
Los cifrados más seguros son bcrypt, scrypt y PBKDF2, mientras que los más inseguros son MD5
y SHA1.
A la hora de procesar contraseñas se busca que la función hash sea lo más lenta posible para
que el atacante pueda realizar emenos ataques por unidad de tiempo.
Las técnicas de hash básicas son vulnerables a ataques de diccionario Rainbow Tables

Diccionarios con códigos hash junto con las palabras que los han generado.
Se mitiga añadiendo fragmentos aleatorios (salt) que se concatenan a la contraseña para
generar un hash más difícil de predecir.

2026/01/12 17:22 17/17 [SAP] TurboResumenExpresSap.txt

Knoppia - https://knoppia.net/

2.3.2 PBKDF2

Algoritmo hash muy utilizado, permite especificar un salta y un número de interaciones que se
realizarán para calcular el hash final.Se suele combinar con HMAC-SHA que es una forma especial de
usar SHA.

From:
https://knoppia.net/ - Knoppia

Permanent link:
https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

Last update: 2025/07/13 16:32

https://knoppia.net/
https://knoppia.net/doku.php?id=app:turboresumen&rev=1752424376

	[SAP] TurboResumenExpresSap.txt
	Tema 1: Introducción a las aplicaciones seguras
	1.1 Definiciones
	1.2 Aplicaciones y servicios con estado (stateful)
	1.3 Aplicaciones y servicios web sin estado (stateless)
	1.4 Aplicaciones Web tradicionales y SPA

	Tema 2: Vulnerabilidades y mecanismos de prevención
	2.1 Marcos de referencia
	2.2 Vulnerabilidades en el tratamiento de los datos de entrada
	2.2.1 Inyección de código
	2.2.1.1 Inyección SQL
	2.2.1.2 Inyección en ficheros de log
	2.2.1.3 Inyección en cabeceras HTTP
	2.2.1.4 Inyección en SMTP
	2.2.1.5 Inyección de comandos del sistema operativo
	2.2.1.6 Inyección en LDAP
	2.2.1.7 Inyección en XML y Xpath
	2.2.1.8 Conlusiones de la inyección de código

	2.2.2 Inyección de Javascript
	2.2.2.1 Tipo 1: Reflected XSS
	2.2.2.2 Tipo 2: Stored XSS
	2.2.2.3 Tipo 0: DOM-Based XSS
	2.2.2.4 XFS y ClickJackign
	2.2.2.5 XSHM
	2.2.2.6 Prevención de la inyección de javascript
	2.2.2.7 Prevención de XFS

	2.2.3 Content Security Policy (CSP)
	2.2.3.1 script-src
	2.2.3.2 frame-ancestors
	2.2.3.3 report-uri y report-to

	2.2.4 Inyección de entidades externas en XML (XXE)
	2.2.5 Deserialización y carga dinámica
	2.2.5.1 Deserialización
	2.2.5.2 Carga dinámica

	2.2.6 Desbordamiento de Pila
	2.2.6.1 Prevención del desbordamiento de pila
	2.2.6.2 Ensamblador x86

	2.2.7 Validación de datos

	2.3 Vulnerabilidades en la autenticación
	2.3.1 Hashes
	2.3.2 PBKDF2

