2026/01/16 02:54 1/4 Vulnerabilidades en el tratamiento de los datos de entrada

Vulnerabilidades en el tratamiento de los
datos de entrada

Una vulnerabilidad es algo que no esta bien implementado o implementado de forma débil, de forma
que esta debilidad pude ser aprovechada por un atacante para causar algun dafo. La vulnerabilidad
mas habitual es que los datos de un usuario no se validen de forma adecuada. Para esto se pueden
usar formularios o webs que se consultan de forma programatica.

Inyeccion de codigo

u,n

En la comunicacion entre aplicaciones y bases de datos suelen haber unos tokens como “;” que se
pueden utilizar de forma que usando los datos del usuario se puede ejecutar una consulta en una
base de datos que no se deberia poder ejecutar normalmente. Esta vulnerabilidad era la mas
importante hasta que en 2021 paso a la tercera posicion del OWASP. Existen varios tipos de
inyeccion:

e SQL

¢ De Log

e Comandos de sistema operativo
e XML

e XPath

Inyeccion SQL

Conocida cambién como CWE-89: Improper neutralization of Special Elements used in an SQL
command. Se produce cuando los datos de entrada proporcionados por el usuario utilizan algunos de
los tokens de SQL de forma que no se procesan de forma adecuada, resultando en que la consulta de
validacién no se ejecuta de la forma esperada. Por ejemplo, una consulta de login sqgl puede ser:

String q “SELECT * FROM users Where email="" email “'AND password=""

password ;
Un ejemplo de ataque de inyeccidn seria el siguiente:

"SELECT * FROM users Where email = 'bob@acme.com' OR 'l' = '1' AND password

= 'any
Al meter un OR de por medio puede enganar al sistema de validacion para dejar loguear.
Otro ejemplo seria este:

email, password, full name
users
email ‘any' full name '%Bob%" ;

Knoppia - https://knoppia.net/

Last update: 2024/09/19 16:04 app:vemp https://knoppia.net/doku.php?id=app:vemp&rev=1726761861

También se pueden realizar ataques destructivos metiendo un DROP en la consulta.

Otras técnicas de inyeccion SQL intentan explotar caracteristicas de algin gesto de base de datos
concreto. Para ello es necesario identificar qué gestor de base de datos almacena la informacién a
base de analizar los mensajes de error.

Otra variante es el Blind SQL ljection que consiste en que el atacante genera consultas booleanas, de
forma que con esto y un diccionario de datos se puede llegar a obtener una base de datos de usuarios
completa. Estas vulnerabilidades se pueden probar en vulnweb.

Para prevenir esto, Java tiene consultas parametrizadas, también conocidas como Prepared
Statements que evita la construccién de una consulta de forma manual a través de concatenacién. Un
ejemplo seria el sisguiente en caso de consultar datos usando un correo electrénico:

String query "SELECT email, password, full name FROM users WHERE email =
?II

PreparedStatement stmt connection.prepareStatement(query
stmt.setString(1l, email

string q "SELECT * FROM users WHERE name = ? AND birthdate > ?"
PreparedStatement preparedStatement
DriverManager.getConnection(url).prepareStatement(q
preparedStatement.setString(1l, "bob"
preparedStatement.setDate(2, getDate , 1,

En caso de usar Java Persisctence API el formateado de los parametros de entrada se hace de forma
similar.

De todas formas esta solucion tiene limitaciones ya que solo se pueden parametrizar valores de
columna, pero no identificadores.

por ejemplo en:
? runtime ;

No se pueden usar consultas parametrizadas.

Si no se pudieran utilizar consultas parametrizadas, otra técnica son listas blancas, que acotan los
valores validos que se pueden utilizar, si los datos recibidos no estan en la lista blanca, se rechaza la
consulta.

En caso de que nada de esto funcione se puede usar el escapado manual. Generalmente hay librerias
que pueden hacer esto de forma automatizada. Las reglas de escapado son un poco diferentes en
funcién de la base de datos que se esté utilizando.

Inyeccidn en ficheros de log

Los ficheros de log se usan para tener trazabilidad de los eventos que ocurran en el sistema,
almacenan todos los sucesos que ocurren en un sistema. Ocurre cuando se busca falsificar (Log
Forgery) los ficheros de log con entradas falsas o inyectar cédigo javascript en el log, de forma que si

https://knoppia.net/ Printed on 2026/01/16 02:54

http://testphp.vulnweb.com
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+preparedstatement
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+preparedstatement
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+drivermanager

2026/01/16 02:54 3/4 Vulnerabilidades en el tratamiento de los datos de entrada

la persona que visualiza el log usa alguna herramienta de navegador se pueda producir un ataque
Por ejemplo, este cddigo genera una entrada de log en funcién al usuario:
String val request.fetParameter("val"

int value = integer.parselnt(val

NumberFormatException
log.info("Failed to parse val =" val

El problema es que si el usuario introduce algo como:
twenty-one%0a%0aINFO:+user+logged+out%s3dbadguy

Esto permitiria afladir mas cosas al log. correspondiendo los %0a a saltos de linea y lo restante a un
mensaje de log. Esto se puede paliar con librerias como log4j que permiten gestionar los mensajes de
log enviados desde la aplicacion. Tiene un fichero (log4j.xml) que indica que mensajes del log se

pasan cuando se consulta el log o clasificar estos mensajes en ficheros diferentes en funcién al tipo
de entrada de log.

Inyeccion en cabeceras HTTP

Se producen cuando se utilizan entradas de usuario incorrectamente escapadas para anadir
cabeceras HTTP de forma dindmica e inesperada. Esto puede dar lugar al HTTP Response Spliting.
Esta vulnerabilidad puede ser combinada con inyeccién en javascript. Si usdramos por ejemplo al
siguiente cookie:

String author request.getParametter (AUTHOR PARAM
Cookie cookie Cookie("author", author
cookie.setMaxAge

Si un usuario malintencionada mandara lo siguiente:

author=Wiley Hacker\r\nContent-Length:999\r\n\r\n<html> mal....

Produciria saltos de linea que rompen la peticién, insertando contenido malicioso.

Para prevenir este tipo de ataque, si tenemos un grupo de autores pequefios, se podria hacer una
lista blanca y en caso de no ser posible, se utilizaria escapados.

Inyeccion de JavaScript (XSS)

Entidades externas en documentos XML (XEE)

Knoppia - https://knoppia.net/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+numberformatexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: 2024/09/19 16:04 app:vemp https://knoppia.net/doku.php?id=app:vemp&rev=1726761861

Deserializacion y carga dinamica

Practica de SAP

Aplicacién web hecha en java en la cual aparecerna las vulnerabilidades que se estan viendo. el
objetivo es localizar las vulnerabilidades y solucionarlas. Para otras vulnerabilidades hay que hacer
exploits. Se valorara un exploit de calidad. Grupos de 3.

From:
https://knoppia.net/ - Knoppia

Permanent link:
https://knoppia.net/doku.php?id=app:vemp&rev=1726761861

Last update: 2024/09/19 16:04

https://knoppia.net/ Printed on 2026/01/16 02:54

https://knoppia.net/
https://knoppia.net/doku.php?id=app:vemp&rev=1726761861

	Vulnerabilidades en el tratamiento de los datos de entrada
	Inyección de código
	Inyección SQL
	Inyección en ficheros de log
	Inyección en cabeceras HTTP
	Inyección de JavaScript (XSS)

	Entidades externas en documentos XML (XEE)
	Deserialización y carga dinámica
	Práctica de SAP

