2026/01/15 14:30 1/7 Introduccidn a la Programacién en Solidity

Introduccion a la Programacion en Solidity

Para programar en solidity se utiliza el IDE Remix:

File Edit View Window Help
FILE EXPLORER

v0.38.0 RELEASE HIGHLIGHTS

o Alpha relea:
o Def i

& Rate Limiting Nullifier

Files
Start Coding Open File  Access File System sOeee
Project Templates
MULTISIG ERC20 ERC20 ERC721
) oxProject Z OpenZeppelin Z Openzeppelin

GitHub  Gist  IPFS

Learn
Remix Basics

Anintroduction to Remix's interface and basic operations.

Gat Started

Intro to Solidity

Deploying with Libraries

componentes de un Smart Contract

Pragma

Lo primero que se escribe en un contrato inteligente es la versién pragma, que indica la version del
compilador que debe usar el cddigo. Generalmente se debe poner un rango de versiones que sean
compatibles con el cédigo, por ejemplo, si quisiéramos que el cédigo fuera compilable por las
versiones entre la 0.6.12 y la 0.9.0 escribiriamos:

pragma solidity >=0.6.12 <0.9.0;

Para crear un contrato vacio, a continuacion del pragma se puede introducir lo siguiente:

contract NombreDelContrato{

Variables y constantes

Las variables de estado se almacenan permanentemente en el almacenamiento de un contrato. Se
podria decir que es como si se escribiera en una base de datos. La asignacién de memoria es estatica
y no se puede cambiar. Las variables locales deben ser declaradas dentro de una funcién y no se

Knoppia - https://knoppia.net/


https://github.com/ethereum/remix-desktop
https://knoppia.net/lib/exe/detail.php?id=bc%3Asolidity&media=bc:pasted:20240918-134133.png

Last update: 2024/09/18 14:49 bc:solidity https://knoppia.net/doku.php?id=bc:solidity&rev=1726670993

almacenara en la blockchain, mientras que las variables globales proporcionan informacidn sobre la
blockchain.

contract variable
uint IntSinSigno //Variable de tipo Unisgned integer

Las constantes son variables que no se pueden modificar, se usan para ahorrar costes de gas (Gas es
una cantidad que se cobra por cada transaccién.) Las constantes se suelen poner en mayusculas por
convencion para diferenciarlas de las variables.

contract Constante {

address public constant MY ADDRESS = 0x29384093845093ifSD0Asdjas;
uint public constant MY _UINT = 325;

}
Operaciones matematicas

Se pueden realizar mas o menos las mismas operaciones que en otros lenguajes de programacion:

Suma: $x+y$

Resta: $x-y$
Multiplicacion: $x*y$
Division: $x/y$
Mddulo: $x%y$
Exponenciacion: xy

En algunas ocasiones es necesario una conversidn entre tipos de datos:

uint8 x
uint y

uint8 z x* uint8(y) //Se convierte y al mismo tipo que X para la operacién

Estructuras de datos

En Solidity, al igual que en C, tenemos el tipo struct que se puede utilizar para agrupar elementos
relacionados, estas estructuras pueden ser declaradas de la siguiente forma:

struct Persona
uint edad
uint nombre

Para crear una instancia de esta estructura se hace lo siguiente:

Persona manuel = Persona(25, "Manuel");

https://knoppia.net/ Printed on 2026/01/15 14:30



2026/01/15 14:30 3/7 Introduccidn a la Programacién en Solidity

Enums

Permite la creacion de un tipo de datos personalizado con un conjunto de valores constantes de la
siguiente manera:

contract Enum
enum Semana

Lunes, //devuelve 0
Martes, //devuelve 1
Miércoles, //devuelve 2
Jueves, //devuelve 3
Viernes, //devuelve 4
Sabado, //devuelve 5
Domingo //devuelve 6

Semana public semana

//funcién para obtener el valor del enum
function get pulic view returns (Semana
semana

//funcién para modificar el enum
function set(Semana semana) public
semana = _semana

//actualizar a un dia de la semana especifico
function domingo() public
semana Semana.domingo

//devolver al primer valor
function reset() public
delete semana

Arrays

Permiten almacenar una coleccién de elementos del mismo tipo, facilita su ordenacién, iteracion y
busqueda. Existen los siguientes tipos:

//Array de longitud fija de 10 elementos de tipo uint
uint|[ 10! ArrayFijo

//Array de longitud fija de 10 elementos de tipo string

Knoppia - https://knoppia.net/



Last update: 2024/09/18 14:49 bc:solidity https://knoppia.net/doku.php?id=bc:solidity&rev=1726670993

sting ArrayString

//array dinamico
uint| | ArrayDinamico

//array dinamico de structs
Personal | personas

Para manejar Array dinamicos disponemos de las siguientes operaciones:

//anadir struct de tipo persona al array
personas.push(manuel

//crear e insertar un objeto struct al array
personas.push(Persona "Alberto"

Funciones

Las funciones nos permiten modularizar y optimizar el cédigo creando pequenas funcionalidades
personalizadas. En Solidity un ejemplo de funcidén seria el siguiente:

//function <nombre de la funcidn>(<variables de entrada>) <visibilidad>
function nombreFuncion(String memory nombre, uint cantidad) public
//contenido de la funcidn

//llamada a la funcion
nombreFuncion("nombre"

Las funciones son siempre publicas de forma predeterminadas lo cual no es muy seguro contra
ataques, por lo que se suele recomendar marcarlas como “private”.

Funciones utiles

Hola Mundo en un Smart Contract

Comenzaremos creando un Smart Contract de prueba con el tipico “Hello World”, para ello
pulsaremos en Start Coding:

https://knoppia.net/ Printed on 2026/01/15 14:30



2026/01/15 14:30 5/7 Introduccidn a la Programacién en Solidity

File Edit View Window Help

FILE EXPLORER a @ i Home X

localhost REM |X .\‘EI ovYinllM

The Native IDE for Web.

Start Coding Open File  Access File System

GitHub  Gist IPFS HTTPS

HolaMundo.sol

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.12 <0.9.0;

contract HelloWorld {
String public greet = "Hello World!";

Tras eso iremos a la pestafia de solidity compiler y le daremos a compile:

Knoppia - https://knoppia.net/


https://knoppia.net/lib/exe/detail.php?id=bc%3Asolidity&media=bc:pasted:20240918-134626.png
https://knoppia.net/doku.php?do=export_code&id=bc:solidity&codeblock=11

Last update: 2024/09/18 14:49 bc:solidity https://knoppia.net/doku.php?id=bc:solidity&rev=1726670993
SOLIDITY COMPILER & {F Home % HelloWorld.sol 3
COMPILER  + @1
0.8.22+commit.4fc1097e

t HelloWorld {
greet = "he

= Compile HelloWorld.sol

Compile and Run script

HelloWorld (HelloWorld.sol)

Publish on Ipfs e
Publish on Swarm

Compilation Details

D ABI [ Bytecode
Después nos movemos a la pestafia de Deploy and Run Transactions y le damos a deploy:

DEPLOY & RUN TRANSACTIONS T Hor % HelloWorld.sol 3

e
=B8.6.12 <0.9.8;
Remix VM (Shanghai)

v t HelloWorld { ) ;
= greet = "hello World!";
L+

0x5B3...eddC4 (99.9999999! <

3000000

HelloWorld - contracts/HelloWorld.so

ewm version: shanghai

X

Finalmente podemos ir a la pestafia de Deployed Contracts, seleccionar el contrato que acabamos de
enviar y pulsar en el botén greet para ver e mensaje;

https://knoppia.net/ Printed on 2026/01/15 14:30



https://knoppia.net/lib/exe/detail.php?id=bc%3Asolidity&media=bc:pasted:20240918-135604.png
https://knoppia.net/lib/exe/detail.php?id=bc%3Asolidity&media=bc:pasted:20240918-135912.png

2026/01/15 14:30 7/7 Introduccidn a la Programacién en Solidity

Low level interactions

From:
https://knoppia.net/ - Knoppia

Permanent link:
https://knoppia.net/doku.php?id=bc:solidity&rev=1726670993

Last update: 2024/09/18 14:49

Knoppia - https://knoppia.net/


https://knoppia.net/lib/exe/detail.php?id=bc%3Asolidity&media=bc:pasted:20240918-140206.png
https://knoppia.net/
https://knoppia.net/doku.php?id=bc:solidity&rev=1726670993

	Introducción a la Programación en Solidity
	componentes de un Smart Contract
	Pragma
	Variables y constantes
	Operaciones matemáticas
	Estructuras de datos
	Enums
	Arrays
	Funciones
	Funciones útiles

	Hola Mundo en un Smart Contract


