2026/01/15 20:32 1/2 Programacién orientada a objetos en swift

Programacion orientada a objetos en swift

Clases

class forma{
var lados = Int?//Atributo. Indicamos que el valor es opcional, si no se
asigna valor serd nil (Equivalente a NULL en este lenguaje)
init(lados: Int){//Constructor de la clase
self.lados = lados//El this es Self en Swift
}
func descSimple()->String{//metodo
return "una forma con \(lados)"
}
}

var formilla = forma()//instanciamos un objeto de la clase forma
formilla.lados = 7 //Le asignamos un valor al atributo lados
print(formilla.descSimple())

En caso de querer limpiar memoria tras borrar una clase podemos utiliza deinit

Herencia

Para indicar herencia simplemente ponemos dos puntos y la clase de la que se hereda. Se pueden
sobreescribir funciones afladiendo un “override” antes del func. Se puede llamar al constructor del
padre con “super.init(Atributo:Valor)”:

Class Poliedro: forma{

var nuevoAtributo: Int

init(lados:Int, nuevoAtributo:Int){
super.init(lados:lados)//1lamamos al constructor del padre
self.nuevoAtributo = nuevoAtributo

}

override func descSimple(){
print("Hola, soy una funcién heredada reescrita")

}

}

Precondiciones y postcondiciones

Sirven para asignar aciones que se deben hacer antes y después de una tarea.

Knoppia - https://knoppia.net/

Last update:
2023/10/18 swift:programacionorientadaobjetos https://knoppia.net/doku.php?id=swift:programacionorientadaobjetos&rev=1697646043
16:20

Enumeraciones y Estructuras

Ambas cosas son practicamente los mismo, sirven para pasar datos por valor o por referencia. Los
Struct se pasan por valor y los enum por referencia. Suele tener que ver con el rendimiento, cuando
algo se usa muy a menudo suele ser una clase, pero cuando es algo mas temporal se usan structs y
enums.

struct cartas{
var rank: Rank
var suti: Suit
func simpleDescription()->String{
return "the \(rank.simpleDescription()) of \(suit.simpleDescription())"
}
}

enum suit{
case spades, hearts, diamonds clubs//Equivaldrian a caso 0,1,2 y 3.
func simpleDescription()->String{
switch self{
case .spades
return "spades"
case .hearts
return "hearts"
case .diamonds
return "diamonds"
case .clubs
return "clubs"
default:
return String(self.rawValue)

From:
https://knoppia.net/ - Knoppia

Permanent link:

Last update: 2023/10/18 16:20

https://knoppia.net/ Printed on 2026/01/15 20:32

https://knoppia.net/
https://knoppia.net/doku.php?id=swift:programacionorientadaobjetos&rev=1697646043

	Programación orientada a objetos en swift
	Clases
	Herencia
	Precondiciones y postcondiciones
	Enumeraciones y Estructuras

