Proyecto Integral de Ingeniería del Software | |
---|---|
Metodologías Ágiles |
Trabajo Fin De Grado | |
---|---|
Guía Memoria TFG |
Servidores | |
---|---|
Minercraft | |
Knoppia | |
Omegacraft |
Base de datos de juegos | |
---|---|
GameBoy Advance (GBA) |
Proyecto Integral de Ingeniería del Software | |
---|---|
Metodologías Ágiles |
Trabajo Fin De Grado | |
---|---|
Guía Memoria TFG |
Servidores | |
---|---|
Minercraft | |
Knoppia | |
Omegacraft |
Base de datos de juegos | |
---|---|
GameBoy Advance (GBA) |
¡Esta es una revisión vieja del documento!
Muchas veces los datasets que se quieren procesar con Machine Learning son tan grandes que no pueden ser procesados con una sola máquina. En la computación distribuida clásica tenemos una plataforma central (Servidor) que almacena datos de manera distribuida en varios servidores esclavos. El problema que tenemos es que se debe realizar un envío de datos a un servidor central, estando el problema de que en caso de un ataque, un atacante puede quedarse escuchando para tomar los datos que se transportan al servidor. Otro problema es la latencia que hay de por medio, contando tanto el tiempo de transporte como el de procesado por parte del servidor.
Técnicas de protección de modelos de datos en Machine Learning: